LQCD-ext II Project: Risk Register Summary

m of Risk Rating Column Labels						
Row Labels	Cost	Schedule	Security	Service	Technology	Grand Total
Exists	0.925	0.375	0.075	0.55	0.825	2.75
2 - Medium	0.25			0.225	0.5	
01: Technology/systems may take longer than expected to become availal	ole	0.375				0.375
02: Cost projections for future years uncertain	0.25					0.25
08: Failure of a facility due to natural disaster				0.225		0.225
41: Software infrastructure may not be mature enough for newer computin	g architectu	res			0.25	0.25
42: LQCD sustained performance-per-dollar on commodity hardware may	not improve	as rapidly a	as anticipa	ted	0.25	0.25
3 - Low	0.675		0.075	0.325	0.325	1.4
03: Unexpected increases in life costs arise after systems are acquired.	0.125					0.125
04: Hardware acquired becomes obsolete before expected					0.05	0.05
07: Host institutions do not provide necessary infrastructure	0.125					0.125
10: Agency personnel changes reduce support for project	0.125					0.125
11: Major computer system failure					0.125	0.125
13: Changes in funding due to policy changes or new directives	0.125					0.125
16: Change in agency mission					0.025	0.025
17: Inappropriate use of computer resources			0.05			0.05
18: Unauthorized access to computing may disclose private information			0.025			0.025
19: Slow networking between sites inhibits productivity					0.025	0.025
20: Authentication differences affect inter-site transfers, productivity					0.05	0.05
21: Power costs could become substantial	0.05					0.05
26: Utility system failure at one of the facilities				0.125		0.125
27: Loss of nearline stored data				0.125		0.125
28: Stored data may get corrupted or lost				0.025		0.025
37: Staff changes have adverse effect					0.05	0.05
38: Inaccurate Storage Forecasting	0.075					0.075
39: Inadequate Lustre Support	0.05					0.05
40: TJNAF Computing Facilities Re-org				0.05		0.0
Retired	0.225	2.475		0.15	1.5	4.3
Grand Total	1.15	2.85	0.075	0.7	2.325	7.1

Avoid "External Data Connections" warnings after copying file:

Change data source to point back to copy target instead of copy source file via

PivotTable Analyze: Change Data Source

Risk ID	Risk Title	Risk Area	Description	Probability of Occurrence	Impact of Occurrence	Risk Rating
1	01: Technology/systems may take longer than expected to become available	Schedule	The schedule for achieving LQCD investment milestones might slip for the following reasons: a) Vendors may take longer than anticipated to bring new processors, memory systems, and/or interconnect systems to market; b) It may take longer than expected to bring new systems on-line for production use.	High	Moderate	0.375
2	02: Cost projections for future years uncertain	Cost	Although cost projections for the current budget year are reasonably precise, projections for subsequent years become progressively uncertain.	Medium	Moderate	0.250
3	03: Unexpected increases in life costs arise after systems are acquired.	Cost	Unexpected increases in life costs arise after systems are acquired.	Low	Moderate	0.125
4	04: Hardware acquired becomes obsolete before expected	Technology	Obsolecence: The hardware acquired by this investment becomes obsolete before the end of the planned operations and so does not deliver scientific computing for LQCD calculations in a cost-effective manner.	Medium	Low	0.050
7	07: Host institutions do not provide necessary infrastructure	Cost	Dependency: Host institutions will not provide space, network connectivity, and mass storage.	Low	Moderate	0.125

8	08: Failure of a facility due to natural disaster	Service	Surity: A major failure of a facility due to natural disaster (destruction of buildings, utility systems)	Low	Severe	0.225
10	10: Agency personnel changes reduce support for project	Cost	Agency personnel changes, limiting continuity and support for this investment.	Low	Moderate	0.125
11	11: Major computer system failure	Technology	A major system, such as a cluster or a high performance network, fails to meet performance specifications such that our ability to achieve scientific goals is compromised and the investment does not meet technical goals.	Low	Moderate	0.125
13	13: Changes in funding due to policy changes or new directives	Cost	Changes in funding, due to alteration in administration policy, or legislative directives.	Low	Moderate	0.125
16	16: Change in agency mission	Technology	Changes in the mission and plans of the Office of Science.	Low	Low	0.025
17	17: Inappropriate use of computer resources	Security	Inappropriate use of computer resources by authorized or unauthorized personnel	Medium	Low	0.050

18	18: Unauthorized access to computing may disclose private information	Security	Unauthorized access to computing hardware can disclose private information.	Low	Low	0.025
19	19: Slow networking between sites inhibits productivity	Technology	Slow Internet data transfer rates among the three labs and external sites may inhibit productivity	Low	Low	0.025
20	20: Authentication differences affect inter- site transfers, productivity	Technology	Differing authentication schemes among the three labs makes data transfers difficult which limits productivity	Medium	Low	0.050
21	21: Power costs could become substantial	Cost	The direct (electricity for computers) and indirect (electricity for cooling the computers) costs to the DOE could be substantial in the later years of the project.	Medium	Low	0.050
26	26: Utility system failure at one of the facilities	Service	Utility system failure at one of the facilities	Low	Moderate	0.125

27	27: Loss of nearline stored data	Service	Reliability: Loss of nearline stored data.	Low	Moderate	0.125
28	28: Stored data may get corrupted or lost	Service	Data Integrity: Some stored data may get corrupted or lost. Some LQCD data products, such as gauge configurations and very large quark propagators, are very valuable in terms of the computing required to reproduce them in case of loss or corruption.	Low	Low	0.025
37	37: Staff changes have adverse effect	Technology	Performance: Changes in staff can have adverse effects on the project.	Medium	Low	0.050
38	38: Inaccurate Storage Forecasting	Cost	Changes in science algorithms or storage use patterns could lead to underestimation of future storage needs which drive up costs or limit the science that can be done with the deployed CPU's.	High	Low	0.075
39	39: Inadequate Lustre Support	Cost	Lustre may require more site effort than currently expected (for a fixed amount of storage) if vendor support or storage operating characteristics change.	Medium	Low	0.050

40	40: TJNAF Computing Facilities Re-org	Service	TJNAF is re-organizing its computing facilities to meet a PUE goal of 1.4 by about March 2017. This will mean one more full power outage in late 2016 (power transitions, Lustre relocation) plus rolling downtime for compute cluster as racks are moved and/or reconfigured.	Medium	Low	0.050
41	41: Software infrastructure may not be mature enough for newer computing architectures	Technology	41: Software infrastructure may not be mature enough for the latest highest-performing architectures to allow the project to exploit the otherwise most cost-effective hardware	Medium	Moderate	0.250
42	42: LQCD sustained performance-per- dollar on commodity hardware may not improve as rapidly as anticipated	Technology	The performance of commodity hardware components may not improve or their prices may not drop as rapidly as anticipated. New or advancing technologies in commodity hardware, particularly in processors and accelerators, may not perform adequately because of unforeseen bottlenecks that are not adequately addressed in current LQCD software. Realization of these risks may result in the investment failing to meet performance goals in the later years of the project.	Medium	Moderate	0.250

Risk Priority	Risk Status	Creation Date	Last Review Date	Next Review Date	Last Change
2 - Medium	Exists	7/1/04	4/15/16	7/15/16	No change
2 - Medium	Exists	7/1/04	4/15/16	7/15/16	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	4/8/2015: Mitigation strategy text: typically for 4.5 years (was 3 years)
3 - Low	Exists	7/1/04	4/15/16	4/15/17	No change

2 - Medium	Exists	7/1/04	4/15/16	7/15/16	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	4/8/2015: Clarify that this risk applies to all systems, even though the mitigation only treats the most likely case.
3 - Low	Exists	7/1/04	4/15/16	4/15/17	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	No change
3 - Low	Exists	7/104	4/15/16	4/15/17	No change

3 - Low	Exists	6/1/05	4/15/16	4/15/17	No change
3 - Low	Exists	6/1/05	4/15/16	4/15/17	4/22/2015: Rewrote mitigation stategy to address improvements in networking in past few years.
3 - Low	Exists	6/1/05	4/15/16	4/15/17	4/8/2015: Modest text change in mitigation strategy
3 - Low	Exists	8/8/05	4/15/16	4/15/17	No change
3 - Low	Exists	7/21/09	4/15/16	4/15/17	4/8/2015: Adjusted mitigation strategy text.

3 - Low	Exists	7/1/04	4/15/16	4/15/17	4/8/2015: Adjusted mitigation strategy text.
3 - Low	Exists	8/18/09	4/15/16	4/15/17	No change
3 - Low	Exists	7/1/04	4/15/16	4/15/17	4/22/2015: Set to impact to Low, add Notes about variants.
3 - Low	Exists	8/20/14	9/30/15	10/15/16	No change
3 - Low	Exists	8/20/14	4/15/16	4/15/17	No change

3 - Low	Exists	8/20/14	1/20/16	7/15/16	Added notes
2 - Medium	Exists	4/22/15	4/22/15	7/15/16	4/22/2015: Added new risk. Similar to 29 (retired) and 25.
2 - Medium	Exists	8/19/15	4/15/16	7/15/16	No change

Mitigation Strategy	Notes
For more than a decade now, the LQCD Integrated Project Team has worked on multiple large cluster hardware procurements with significant success. Experienced professional staff follow the commodity market carefully and gain insight by evaluating prototype hardware. They meet with vendors frequently under non-disclosure agreements and are briefed on roadmaps for components such as processors, chipsets, motherboards, network interface cards and switches. In addition to working closely with manufacturers and system integrators, the team has the capability of testing pre-release components. Working with the manufacturers, the team is aware of the strengths and weaknesses in vendor products. The team is able to determine whether new capabilities will actually provide any advantage in future system procurements. The team plans to use past procurement methodologies, fine tuning them as appropriate. Market information is gathered and prototypes are built throughout the lifetime of the project. Open procurements of commodity components allow for competitive prices. Since hardware is modular in nature, if prices exceed expectations in any given year, it is possible to deploy smaller machines A level of performance contingencies are maintained for all procurements. Hardware maintenance costs are included in procurement of components for each new system procured (each year). Operations costs are well understood based on years of similar operational experience. Each of the three host institutions (FNAL, TJNAF, and BNL) has operated computing equipment for LQCD computing for more than 10 years. Since the LQCD project is staffed by few key professionals, the loss of any of them is likely to affect the performance of the project; this risk is accepted "as-is" although the project does strive through cross-training and other efforts to maintain expertise across and among the staffs at the three sites.	If conventional clusters remain competitive for next two years, the risks will remain same.
The required computer room space is available at each of the host institutions. Only a small fraction of the Internet bandwidth and mass storage of the laboratories is required to support the LQCD computing project. The experiments that are the main users of computer facilities are a high priority for each of the laboratories, and the computer space, and network and mass storage resources will continue to evolve to support these experiments in a way that will also meet the needs of this investment. Further, the project maintains Memoranda of Understanding (MOU) with each institution which detail the resources which are to be committed. In any given year, should one of the three host institutions predict that it would not be able to provide the required resources in a later year; the project will plan to shift deployment of hardware to one of the other host institutions.	

LQCD computer facilities are located within large buildings suitable for large computing	
installations. These building are not necessarily hardened for natural disasters. To make them disaster-	
proof would be extremely expensive. The impact of a disaster is severe because this will impact the	
scientific delivery schedule significantly. However, the probability of occurrence is low. The project	
accepts this risk.	
DOE staff has knowledge of the investment, and have been providing support for over six years. As	
the investment spans multiple programs, this expertise is not limited to a single individual, and so the	
impact of a single change is minimal. The existence of an Integrated Project Team, whose	
composition includes Federal personnel, also mitigate risks due to agency personnel changes. A	
rigorous review process has been established to mitigate risks, including monthly and quarterly	
reports and annual reviews.	
While this risk applies to all systems in principle, we focus our mitigation strategy on new systems	
since, in our experience, that is where this is much more likely to occur. The project evaluates	
prototype machines before procuring and installing production hardware. The project also builds	
appropriate acceptance criteria into major purchases. During the acceptance testing phase lasting 30	
days, the system is tested thoroughly. If the system is deemed to be unacceptable, it can be returned	
to the supplier under the warranty condition. The project procures systems with a minimum 3 year	
warranty service. Also, each project purchase represents an addition of <= 50% to the deployed CPU	
power, which limits the impact of this risk. Even if a new system completely failed to perform	
despite the aforementioned safeguards, at worst only 1/3 of the post-purchase CPU power is affected.	
The loss of any one resource for 2-3 months would not result in a major impact on project	
deliverables.	
The investment allocates resources and builds new computing capabilities on a yearly basis, so it is	
possible to adjust to changing funding levels. This is particularly so because the systems are modular,	
so reductions in funding can be adjusted for by reducing the size of the systems. Such reductions may	
delay reaching computational and scientific milestones. A strategy is not available which mitigates	
the loss of technical computing capability due to substantial decreases in funding.	
The computing systems acquired by this investment for LQCD computing have a broad range of	
applicability in other areas of computational science and could be put into other scientific uses. This	
is an accepted "as-is" risk.	
The computing hardware acquired and operated by this investment is included in enclaves at each of	
the three sites (FNAL, TJNAF, and BNL). These enclaves have approved C&As according to	
Federal guidelines (NIST, DOE). Strong authentication is required for access to the systems. The	
computer resources are on private networks behind these secure systems. The project will coordinate	
security with the host laboratories. Usage is carefully monitored and controlled by batch systems.	
Performance is also carefully monitored, so any unauthorized usage would be quickly noticed and	
terminated. On clusters, batch systems automatically terminate user processes at the end of each job	
and before each new job starts up. Thus, any unauthorized process would be terminated.	

No classified information, sensitive data, or personally identifiable information is stored on the	
systems. No privacy risks are present because the lattice QCD systems acquired and operated by the	
investment contain no personally identifiable information. To enforce this, LQCD users are required	
to comply with security policies established by respective laboratories.	
At FNAL, a dedicated node to be used for intersite transfers (via GlobusOnline) was deployed in	Transfer needs between FNAL and TJNAF are minimal.
2013 with 10 gigE connectivity to the internet and QDR Infiniband connectivity to the FNAL LQCD	Transfer needs between FNAL and BNL are rare and the
Lustre filesystem. When users report slow transfers, Fermilab networking staff have worked with	connectivity is excellent. Transfer needs between TJNAF and
external sites (for example, Globus Online, ANL, NCSA) to determine and repair the causes of any	BNL are minimal. Transfer needs are more frequent from
bottlenecks. Similarly, JLab has a dedicated 10 gigE / 40g IB data gateway hosting GlobusOnline,	Leadership class computing to LQCD computing sites.
with (shared) 10 gigE to ESnet; network experts work with ESnet to diagnose any slow connections.	Although transfer rates between ANL and FNAL are not an
	issue, there are sporadic issues with transfers from Oak Ridge
	to FNAL. Oak Ridge to TJNAF: any transfer problem occurs
	in bursts, mostly with propagators. Transfer problems are often
	solved by providing better tools to users (e.g. BBFTP, Globus
	Online) or suggesting procedural changes such as pre-staging
	from tape to disk.
FNAL, BNL, and TJNAF network staff tunes parameters to optimize transfers. Scientific allocations	
of time on the LQCD computing clusters takes into account the quantity of data which must be	
transferred between sites; if network performance would limit productivity, allocations are made	
such that analysis jobs would run at the same site as data are stored (i.e., to minimize transfers). This	
is an accepted risk for the project since controls for computer security protections are expected to	
become stricter in near future. Site Managers try to mitigate this risk by addressing helpdesk	
requests and better documentation.	
Project staff uses historical power trends to predict electrical costs. The project also tracks actual	
power consumption of new systems. The project also specifies power consumption criteria for new	
procurements to prefer lower power components. The project is always investigating new cost saving	
and effective computer cooling technologies.	
There is a moderate possibility of a single-site utility failure. However, the deployment of SciDAC	Although it is possible to reduce the risk at FNAL by
LQCD software libraries at each site allows end users to shift their scientific production easily from	implementing remedial actions, there is no funding available.
one host institution to another. Should a significant disruption occur, critical scientific production (as	This is considered as an accepted risk and will remain true
determined by the Scientific Program Committee and the Lattice QCD Executive Committee) could	during FY12-14. In FY13 Fermilab will site new hardware in a
continue by such a shift. This may require other less important production to be slowed or delayed.	second computing room that is not subject to summer high
Note that no mitigation strategy is available which could sustain the normal rate of computations	temperature loadsheds.
should one of the facilities suffer a major utility outage.	

The LQCD computing project makes every effort to provide adequate near-line storage to run the	Probability of loss (partial loss) has increased because of the
simulation jobs. This includes Lustre based storage at FNAL and TJNAF. Related procedures and	aging of storage hardware at FNAL.
technologies are refined continuously. Currently, the project has more than adequate near-line	
storage. A formal decision has been made that LQCD project is not responsible for the archival	
storage data. The project refreshed all aging storage hardware in FY13, and in FY15 will being	
migrating from an older Lustre v1.8 to a more stable v2.5 release.	
The most precious LQCD data products (i.e., the most expensive to reproduce) are gauge	TJNAF checks MD-5 checksum of files coming back from
configurations. By USQCD policy, overseen by the Executive Committee, to prevent against loss	tape (and for raw data from experimental program calculates it
these configurations are stored on tape at two or more geographically diverse sites. The responsibility	soon after it is written to disk in the counting house). These
for this storage is held by the individual physics collaborations that have generated the particular data	checks insure that retrieved data is never corrupted by the tape
ensembles. To guard against silent corruption, by policy these files must be written with checksum	library.
(32-bit CRC) data that can be compared on subsequent access to determine whether any data changes	
have occurred. The USQCD standard I/O library, QIO, can be used to calculate, store, and compare	
these CRC data. The USQCD user community are also urged in documentation and at the annual	
collaboration meeting to use this data integrity facility of QIO to guard quark propagator and other	
data products. Also, single gauge configurations can be regenerated from prior gauge configurations.	
The project maintains staff depth in key roles: Project Manager, BNL Site Manager, FNAL Site	While the impact of losing more key staff will be greater, the
Manager, and TJNAF Site Manager. For these roles, an active deputy exists who can fill the role if	probability of this happening within a 6 month timeframe is
and when necessary. This should keep the impact of any one key staff member Low, assuming we	lesser. The case of losing two key staff members for example
lose only one key staff member within a period of 6 months.	might have a Moderate impact instead of Low, but the
	probability of this is considered Low instead of Medium. In
	either case, the Risk Priority is the same.
Annual review of storage needs and use patterns. Continue to employ storage "costing" in the	
allocation model to encourage efficient use of storage, as is done with CPU time, without negatively	
impacting science production. Discourage storage use not directly related to USQCD science goals.	
Annual review of effort expended in Lustre support and revision of forecasted support effort level. In	
FY15 in particular, we plan to upgrade Lustre systems to v2.5, which could spike the support effort	
required. We will track the upgrade effort expected/required to determine whether fallback plans are	
required. We can delay one or both site upgrades, slow one or both site upgrades to reduce effort	
expended to a tolerable level, or stagger the upgrades across the sits. The real impact is to draw	
personnel away from other tasks, thus degrading operations, which could have a scientific impact.	

TJNAF has to move to a hot-aisle containment computing center design with a new high efficiency	The work involved has slipped outside the useful lifetime of
UPS in order to meet a PUE goal value of 1.4 by December 2015. Cooling capacity and efficiency	the ARRA resources, so less impact. 1/20/2016: The timeline
will also be upgraded during this transition. Storage and CPUs will moved a few racks at a time.	for this has pushed out to 2017. 1 of the 2 UPS's has been
Chip's plan is to use base-funded computing to augment project computing during this period in	replaced per plan. Chiller waterline work underway. Computer
order to average 100% up-time for the project site across the year, but some excursions are expected	room redesign has not been awarded yet. Some modest unit
at about the few percent level plus a few days of outages. There is not a lot of contingency in the	downtime for moving CPU's. Then real system downtime to
plan. If a temporary external chiller were to fail, as one did in the past, then this could have a 1-3%	move storage.
impact on the overall average uptime for TJNAF.	
It is not necessary to suddenly have 100% of our software able to absorb a new architecture, as we	April 2015: gains in performance per dollar in the next 2 years
are always running machines as much as 4 years older. Thus, in a single year, the newest machine	are likely to be greatest on NVIDIA's and Intel's next
might be only 25% - 33% of the total project capacity. In each procurement, we optimize the	generation chips, both of which will incorporate stacked
old+new machines to maximize science across a portfolio of applications (some more mature than	memory and have even more cores than current chips. If
others with respect to newest hardware). The computing project does not develop application	enough software has not evolved to the point of being able to
software, and so can only interact with the complementary projects to attempt to optimize the science	exploit these features well, the project might not be able to
output across all relevant projects and machines.	achieve project application performance per dollar to meet
	metrics on cost and schedule.
At any given time this risk is low for the current budget year since price/performance is reasonably	Moore's Law no longer works on 18 month period, period. We
well known for the coming year. However, the risk increases when planning for the succeeding	plan on a 24 month period. The risk is still real, as the market
years, and accordingly performance goals are set more conservatively for the later years of the	may not double on a 24 month period either. Same is true for
project. The project strategy is to follow the market carefully to understand emerging processor,	GPU and Xeon Phi architectures. We can gain most by
accelerator, memory, and network technologies, pricing trends, and performance. Performance of	enabling more software to use advanced architectures. There is
new components is determined through testing with LQCD applications. In general vendors have	also a cost angle to this: we need to see commodity pricing to
provided timely remote access to clusters that can be used for these tests and/or early access to	make architectures cost-effective. In the near-term, we see 16-
engineering or pre-production samples. Disruptive technologies may require building and studying	core parts being available and cost-effective for LQCD (which
small-scale prototypes before developing large production machines. In all system designs	is optimal on 2 ⁿ cores per part) for the next 12-18 months.
components are carefully selected from the range of available models for cost effectiveness for	But will we have to wait "too long" for 32 -core parts? Will
LQCD applications. To date the available LQCD software has been able to exploit new components	the industry stay at 24-cores for an extended period?
cost effectively and technical performance targets have been achieved. However, increasing	
complexity in commodity components, for example, very wide vector units (Xeon Phi) and	
heterogeneous memory architectures (Xeon Phi, NVIDIA GPUs) may not be well exploited by	
LQCD software. Although scientific software development is not in project scope, project staff	
regularly interact with LQCD software developers and can identify issues that may require	
adjustments to the project plan.	
	-

Probability	Value	Impact	Value
High	0.75	Severe	0.9
Medium	0.50	Moderate	0.5
Low	0.25	Low	0.1

Risk Rating Table

Prob \ Impact	Severe	Moderate	Low
High	0.675	0.375	0.075
Medium	0.450	0.250	0.050
Low	0.225	0.125	0.025

Risk Priorities

Prioritization	Low Value	High Value	Risk Planning Level
1 - High	0.500	1.000	Detailed Risk Plan
2 - Medium	0.150	0.500	Modest Risk Plan
3 - Low	0.000	0.150	Minimal Risk Plan

<== 1. Change these values to control Probability, Impact ranges.

<== 3. Then, manually change the shading in the matrix to represent Priori Conditional formatting not programmed in the table yet.

<== 2. Change these "2 - Medium" low/high values to alter Prioritization as

^^^ 4. And finally, remake the "Summary Table" pivot table

present Prioritization values

oritization assignments in Risk Register.

Version	Date	Modifier
1	8/18/09	
2	3/16/10	
3	7/21/10	
4	4/26/11	
5	4/27/12	
6	4/30/13	Rob Kennedy
7	2/18/14	Rob Kennedy
8	3/27/14	Rob Kennedy
9	4/22/14	Rob Kennedy
10	8/20/14	Rob Kennedy
11	10/15/14	Rob Kennedy
12	10/28/14	Rob Kennedy

LQCD-ext II Project: Risk Register Revision

er Revision History

Description of Change

Initial Risk Items for LQCD-ext (derived from LQCD project)

Revised Risk Mitigation Strategies

Revised Risk Management Plan V1.2

Revised Risk Register for GPU/Ds extension purchase

Revised Risk Register, particularly for Accelerated (GPU) Clusters

Reorganize and normalize. Updates by FNAL Site Managers. Include input from JLab, add entries for BG/Q.

Update risks based on semi-annual review begun in October 2013

Split Risk Item 12 into technical risk in Risk Item 12 and personnel risk in Risk Item 37. Address succession plan in Risk Item 37.

Update risks per LQCD-ext Risk Review 4/9/2014 (see review notes for details)

Update risks per LQCD-ext Risk Review 8/20/2014 (see review notes for details)

Update risks per LQCD-ext Risk Review 10/15/2014 (see review notes for details)

Adapt to the LQCD-ext II Project (changes to risk items themselves are now tracked in entries and in review notes)

Risk Areas	DO NOT CHANGE "Risk Areas"
Cost	
Schedule	
Security	
Service	
Technology	